THE TOLERANCE FIELD EFFECT ON THE ANGULAR CONTACT BALL BEARINGS SYSTEMS' RATING LIFE

Rezmires Daniel, Racocea Cezar
Technical University "Gh. Asachi" of Iasi, drezmir@yahoo.com

Abstract

To assure both good dynamic load capacity and higher shaft stiffness, two rolling bearings are usually mounted in pair. The load distribution on the contacts of the two rolling bearings depends on individual stiffness of the each bearing, on the length separator between the bearings, and on the chosen tolerance values. In this work we present a model in five degrees of freedom, which could serve to find the load distribution in bearing arrangements, considering the intermediate elements as rigid bodies. The assembly' stiffness was determined considering the individual stiffness of each element, and the rating life was expressed as a function of tolerance values of the intermediate elements. This was realised by solving a non-linear system of equations, including the centrifugal effects and some of the friction forces.

KEYWORDS: Angular - contact ball bearing, Quasi-dynamic equilibrium, Rating life.

1.Analytical Approach

For any rolling bearing pair, (r, j), the distance pieces L1, L2 are considered to have the same initial length and the shaft is considered as rigid.

The following co-ordinate systems were considered:

- an inertial system $O X Y Z$ with its origin on the middle length of the inner ring's curvature centres;
- a rolling element frame $O X_{I} Y_{l} Z_{l}$ for each (r, j) ball.

To limit the complexity of the analysis, the following assumptions were admitted:

- the bearing was mounted on an elastic shaft and in a rigid housing;
- the surfaces in contact have ideal shapes;
- the pair bearing system were considered to be rigid except the local contact zones.
Related to the ball co-ordinate system $\left(O X_{I} Y_{l} Z_{I}\right)_{r, j}$ two degrees of freedom, represented by the translations $u x$ and $u z$, have been considered for each ball.
The external load vector $\{F\}$, applied to the entire arrangement, contains 5 components that are further divided to each bearing of the arrangement:

$$
\begin{align*}
& \{F\}=\left\{F_{x} F_{y}, F_{z}, M_{y}, M_{z}\right\} \tag{1a}\\
& \{F\}_{r}=\left\{F_{x n}, F_{y n} F_{z v}, M_{y n}, M_{z r}\right\} \tag{1b}
\end{align*}
$$

The static equilibrium provides easily the system of equations:
$F_{x 1}+F_{x 2}=F_{x}$
$F_{r 22}+F_{r z 1}=F_{z}$
$F_{z}(L+B)=F_{r z l} \cdot B$

$$
\begin{align*}
& F_{r y 2}+F_{r y 1}=F_{r y} \\
& F_{y .}(L+B)=F_{r y 1} \cdot B \tag{2}\\
& M_{z 1}+M_{z 2}=M_{z}
\end{align*}
$$

$M_{y 1}+M_{y 2}=M_{y}$

The displacement vector $\{\delta\}_{r}$ of the " r " inner ring has also five components:

$$
\begin{equation*}
\{\delta\}_{r}=\left\{\delta_{x}, \delta_{y,}, \delta_{z p}, \gamma_{y}, \gamma_{z}\right\} \tag{3}
\end{equation*}
$$

Fig.1. General view

2. Static Equilibrium of the (r, j) ball element

To solve the equilibrium system (3), is necessary to find the components of $\{\delta\}_{r}$ vector which are functions of distances $O_{e} O_{w}$, and $O_{i} O_{w}$ respectively. The following notations were introduced:

$$
\begin{align*}
& l_{o e}=O_{e} O_{w}=R o-D_{w} / 2-S d / 4 ; \tag{4a}\\
& l_{o i}=O_{i} O_{w}=R i-D_{w} / 2-S d / 4 ; \tag{4b}\\
& L_{i e}=l_{o i}+l_{o e} \tag{4c}
\end{align*}
$$

Considering identical bearings in the arrangement pair, the $D 1$ and $D 2$ values presented in Figures 2 and 3, are :

$$
\begin{align*}
& \quad D 1=L 1+\left(B_{i, l}+B_{i, 2}\right) / 2 \tag{5a}\\
& D 2=L 2+\left(B_{0,1}+B_{o, 2}\right) / 2 \tag{5b}\\
& D 1=D 2 \tag{5c}
\end{align*}
$$

Considering further the tolerances $T B_{i, o, r}$ corresponding to $B 1, B 2$ distances and the tolerances $T L_{l, 2}$ corresponding to $L 1$ and $L 2$ distances, the values D1 and D2 become:

$$
\begin{align*}
& D_{2 p}=L 2+T B_{o, 1}+T L_{2}+T B_{o, 2}+\left(B_{o, l}+B_{o, 2}\right) / 2 \tag{6}\\
& D_{l p}=L 1+T B_{i, 1}+T L_{l}+T B_{i, 1}+\left(B_{i, 1}+B_{i, 2}\right) / 2 \tag{7}
\end{align*}
$$

The initial contact angle α_{0} and $L_{i e}$ parameters depend also on $D_{2 p}$ and $D_{l p}$ values, so that new values $\alpha_{0, r}$ and $L_{i e}(r)$ have to be considered. Also, $\alpha_{l, r}$ and R parameters are different versus the initial values.
The supplementary axial clearance introduced by the effective values for $D_{2 p}$ and $D_{l p}$ parameters is:

$$
\begin{equation*}
j a=D_{2 p}-D_{l p} \tag{8}
\end{equation*}
$$

Fig. 2. The α_{0} and $L_{i e}$ when $L 2+\left(B_{o, l}+B_{o, 2}\right) / 2>$

$$
L 1+\left(B_{i, 1}+B_{i, 2}\right) / 2
$$

Figure 3. The α_{0} and $L_{i e}$ when $L 2+\left(B_{o, 1}+B_{o, 2}\right) / 2<$

$$
L 1+\left(B_{i, 1}+B_{i, 2}\right) / 2
$$

Assuming "ja" as decision criteria results:
if $j a \geq 0$

- for $r=2$
- $\alpha_{0,2}=\arctan \left(\left(L_{i e} \cdot \sin \left(\alpha_{0}\right)+j a\right)\right)\left(L_{i e} \cdot \cos \left(\alpha_{0}\right)\right)$;
- $\quad \operatorname{sdl}(2)=\left[\left(L_{i e} \cdot \cos \left(\alpha_{0,2}\right)\right)^{2}+\left(L_{i e} \cdot \sin \left(\alpha_{0,2}\right)+j a\right)^{2}\right]^{0.5}-L_{i e}$,
- $\quad L_{i e}(2)=l o i+l o e+s d l(2)$;
- for $r=1$
- $\alpha_{0, l}=\alpha_{0} ; \operatorname{sdl}(1):=0 ; L_{i e}(1):=L_{i e}$
and
- $\alpha_{r, l}=\arctan \left\{\left[D_{2 p}\right] /\left[2 \cdot\left[d m / 2+l o i(r) \cdot \cos \left(\alpha_{0, r}\right)\right]\right]\right\}$
- $R=\left[D_{2 p}\right] /\left[2 \cdot \sin \left(\alpha_{r, I}\right)\right]$;
if $j a<0$
- for $r=1$
- $\alpha_{0,1}=\arctan \left(\left(L_{i e} \cdot \sin \left(\alpha_{0}\right)+j a\right)\right)\left(L_{i e} \cdot \cos \left(\alpha_{0}\right)\right)$;
- $\operatorname{sdl} 1(1)=\left[\left(L_{i e} \cdot \cos \left(\alpha_{0,1}\right)\right)^{2}+\left(L_{i e} \cdot \sin \left(\alpha_{0,1}\right)+j a\right)^{2}\right)^{0.5}-L_{i e}$;
- $\quad L_{i e}(1)=l o i+l o e+s d 1(1)$;
- for $r=2$
- $\alpha_{0,2}=\alpha_{0 ;} \operatorname{sdl}(2):=0 ; L_{i e}(2):=L_{i e}$
and
- $\alpha_{r, l}=\arctan \left\{\left[D_{2 p}\right] /\left[2 \cdot\left[d m / 2+l o i(r) \cdot \cos \left(\alpha_{0, r}\right)\right]\right]\right\}$
- $R=\left[D_{2 p}\right] /\left[2 . \sin \left(\alpha_{r, 1}\right)\right]$;

If the inner ring is misaligned around $O Y$ and $O z$ axes with γ_{y} and γ_{z} angles respectively, then the initial angle $\alpha_{r, I}$ become a function of $\alpha_{I}(r, j)$: $\alpha_{l}(r, j)=\alpha_{r, I}+\operatorname{sgn}(r) \cdot \gamma_{v} \cdot \cos (\psi(r, j))+\operatorname{sgn}(r) \cdot \gamma_{Z} \cdot \sin (\psi(r, j))$
where:

- $\psi(r, j)$ defines the angular position of the ball element in the inertial system;
- $\operatorname{sgn}(r)$ defines " r " row:
- $\operatorname{sgn}(r)=\left\{\begin{array}{cc}1, & r=1 \\ -1, & r=2\end{array}\right.$

Because in the static load case the inner and outer contact angles are equal for any individual ball element, but different for every ball, the total deformation that acts on the (r, j) ball can be written as:

$$
\begin{equation*}
\delta(r, j)=\sqrt{x(r, j)^{2}+z(r, j)^{2}}-l_{o i}-l_{o e} \tag{11}
\end{equation*}
$$

where:
$z(r, j)=L_{i e}(r) \cdot \cos \left(\alpha_{0, r}\right)+\delta_{z r} \cdot \cos (\psi(r, j))+$
$+\delta_{y r} \cdot \sin (\psi(r, j))+R \cdot\left[\cos \left(\alpha_{l}(r, j)\right)-\cos \left(\alpha_{r, l}\right)\right]$
$x(r, j)=L_{i e}(r) \cdot \sin \left(\alpha_{0, r}\right)+\delta_{x}+R\left[\sin \left(\alpha_{r, l}\right)-\right.$
$\left.-\sin \left(\alpha_{l}(r, j)\right)\right]$
The contact angle for the (r, j) roller element is:
$\alpha_{s}(r, j)=\alpha_{i}(r, j)=\alpha_{e}(r, j)=\arctan \left(\frac{x(r, j)}{z(r, j)}\right)$
The normal load and contact angle are given by:

$$
\begin{align*}
& Q(r, j)=K_{e c h} \boldsymbol{\delta}(r, j)^{n} \tag{13a}\\
& \alpha_{i}(r, j)=\alpha_{e}(r, j)
\end{align*}
$$

The $\{\delta\}_{r}$ displacement vector results by solving the equilibrium equation system for the inner ring. Using the previous relations, the equilibrium of forces and moments are:

$$
\begin{align*}
& F_{z}=\sum_{r} \sum_{j} Q(r, j) \cdot \cos \left(\alpha_{i}(r, j)\right) \cos (\psi(r, j)) \\
& =\sum_{r} \sum_{j} F_{z r}(r, j) \tag{15a}\\
& F_{y}=\sum_{r} \sum_{j} Q(r, j) \cdot \cos \left(\alpha_{i}(r, j)\right) \sin (\psi(r, j)) \\
& =\sum_{r} \sum_{j} F_{y r}(r, j) \tag{15b}
\end{align*}
$$

$F_{x}=\sum_{r} \sum_{j} Q(r, j) \sin \left(\alpha_{i}(r, j)\right)=$
$=\sum_{r} \sum_{j} F_{x}(r, j)$
$M_{y}=\sum_{r} \sum_{j} F_{x}(r, j) \cdot b_{y}(r, j)+$
$+\sum_{r} \sum_{j} F_{z r}(r, j) \cdot b_{x}(r, j)$.
$M_{z}=\sum_{r} \sum_{j} F_{x}(r, j) \cdot b_{z}(r, j)+$
$+\sum_{r} \sum_{j} F_{y r}(r, j) \cdot b_{x}(r, j)$.
where:

- $Q(r, j)$ represents the load acting on the (r, j) ball;
- $F_{z r}(r, j), F_{y r}(r, j)$ represent the radial forces which act in " r, j " ball;
- $b_{x, y, z}(r, j)$, represents the distance from the point of inner raceway - ball contact to the center of the inertial system.
$b_{x}(r, j)=\frac{B}{2}+\left(\delta_{i}(r, j)+l_{o i}-\frac{D_{w}}{2}\right) \sin \left(\alpha_{s}(r, j)\right)$
$b_{y}(r, j)=\left[C+\left(\delta_{i}(r, j)+l_{o i}-\frac{D_{w}}{2}\right) \cos \left(\alpha_{s}(r, j)\right)\right]$.
. $\sin (\psi(r, j))$
$b_{z}(r, j)=\left[C+\left(\delta_{i}(r, j)+l_{o i}-\frac{D_{w}}{2}\right) \cos \left(\alpha_{s}(r, j)\right)\right]$.
. $\cos (\psi(r, j))$

$$
\begin{equation*}
\delta_{i}(r, j)=\delta(r, j) .\left(K_{\text {ech }} / K_{i}\right)^{l / n} \tag{16}
\end{equation*}
$$

The $\{\delta\}_{r}$ components represent the solution of the Eq. ($15 \mathrm{a}-15 \mathrm{e}$) and it was found by an Newton-Raphson algorithm. To solve the equilibrium system (15) is necessary to write the Jacobian matrix for the two bearings. The rigidity matrix M_{r} is:

$$
M_{r}=\left[\begin{array}{ccccc}
\frac{\partial F x r}{\partial \delta x} & \frac{\partial F x r}{\partial \delta y} & \frac{\partial F x r}{\partial \delta z} & \frac{\partial F x r}{\partial \gamma y} & \frac{\partial F x r}{\partial \gamma z} \tag{17}\\
\frac{\partial F r y}{\partial \delta x} & \frac{\partial F r y}{\partial \delta y} & \frac{\partial F r y}{\partial \delta z} & \frac{\partial F r y}{\partial \gamma y} & \frac{\partial F r y}{\partial \gamma z} \\
\frac{\partial F r z}{\partial \delta x} & \frac{\partial F r z}{\partial \delta y} & \frac{\partial F r z}{\partial \delta z} & \frac{\partial F r z}{\partial \gamma y} & \frac{\partial F r z}{\partial \gamma z} \\
\frac{\partial M y}{\partial \delta x} & \frac{\partial M y}{\partial \delta y} & \frac{\partial M y}{\partial \delta z} & \frac{\partial M y}{\partial \gamma y} & \frac{\partial M y}{\partial \gamma z} \\
\frac{\partial M z}{\partial \delta x} & \frac{\partial M z}{\partial \delta y} & \frac{\partial M z}{\partial \delta z} & \frac{\partial M z}{\partial \gamma y} & \frac{\partial M z}{\partial \gamma z}
\end{array}\right]_{r}
$$

where:
$\frac{\partial F x r}{\partial\{\delta\}_{r}}=\sum_{j} \frac{\partial\left[K_{e c h} \cdot \delta(r, j)^{n} \cdot \sin \left(\alpha_{i}(r, j)\right)\right]}{\partial\{\delta\}_{r}}$
$\frac{\partial F r y}{\partial\{\delta\}_{r}}=\sum_{j} \frac{\partial\left[K_{e c h} \cdot \delta(r, j)^{n} \cdot \cos \left(\alpha_{i}(r, j)\right) \cdot \sin (\psi(r, j))\right]}{\partial\{\delta\}_{r}}$
$\frac{\partial F r z}{\partial\{\delta\}_{r}}=\sum_{j} \frac{\partial\left[K_{e c h} \cdot \delta(r, j)^{n} \cdot \cos \left(\alpha_{i}(r, j)\right) \cdot \cos (\psi(r, j))\right]}{\partial\{\delta\}_{r}}$
$\frac{\partial M_{y}}{\{\delta\}_{r}}=\frac{\partial \sum_{j} F_{x}(r, j) \cdot b_{y}(r, j)+\partial \sum_{j} F_{z}(r, j) \cdot b_{x}(r, j)}{\partial\{\delta\}_{r}}$.
$\frac{\partial M_{z}}{\{\delta\}_{r}}=\frac{\partial \sum_{j} F_{x}(r, j) \cdot b_{z}(r, j)+\partial \sum_{j} F_{y}(r, j) \cdot b_{x}(r, j)}{\partial\{\delta\}_{r}}$.

Fig. 4. The center of mass displacement $(u x, u z)$ for the (r, j) ball.

Fig. 5 The forces on (r, j) ball

3. Quasi-dynamic effects

Due to centrifugal force, both the load and the contact angle are modified versus the static values.

Considering the existence of the centrifugal force the final position for the mass centre of the $\left(r_{2}, j\right)$ ball is presented in Fig. 4 as function of "ux" and "uz" parameters.

The new position of $O_{w e}$ point is found also with the Newton Raphson algorithm applied this time to all balls. The loads that act on the (r, j) ball are presented in Fig.5.

Considering the guiding ball assumption [1], the equilibrium equations for the (j) ball are:
$E F C A(r, j)=Q_{i}(r, j) \cdot \sin \left(\alpha_{i}(r, j)\right)-Q_{o}(r, j) \cdot \sin \left(\alpha_{e}(r, j)\right)-$
$\left[F m i . \cos \left(\alpha_{i}(r, j)\right)-F m o . \cos \left(\alpha_{e}(r, j)\right)\right]=0$
$\operatorname{EFCR}(r, j)=Q_{i}(r, j) \cdot \cos \left(\alpha_{i}(r, j)\right)-$
$Q_{o}(r, j) \cdot \cos \left(\alpha_{e}(r, j)\right)+\left[F m i \cdot \sin \left(\alpha_{i}(r, j)\right)-\right.$
Fmo.sin $\left.\left(\alpha_{e}(r, j)\right)\right]+F c=0$
where:

$$
\begin{aligned}
& F m i=2 \cdot(1-\lambda) \cdot M g / D w ; \\
& F m o=2 \cdot \lambda \cdot M g / D w ; \\
& F f o=\mu \cdot Q o ; \\
& F f i=\mu \cdot Q i \\
& M g=D w^{2} \cdot m \cdot 10^{-7} \cdot \omega_{c} \cdot \omega_{w} \cdot \sin (\beta)
\end{aligned}
$$

β - atitude angle, [rad]
$\beta=\arctan \left(\frac{\sin \left(\alpha_{e}(r, j)\right)}{\cos \left(\alpha_{e}(r, j)\right)+\gamma}\right)$ and $\lambda=1$, for outer race guiding
$\beta=\arctan \left(\frac{\sin \left(\alpha_{i}(r, j)\right)}{\cos \left(\alpha_{i}(r, j)\right)-\gamma}\right)$ and $\lambda=0$, for inner race guiding
The following must be considered:

- Ffo and Ffi act like blocking forces;
- If Fmi>Ffi then Fmi=Fmi-Ffi else Fmi=0;
- If $F m o>F f o$ then $F m o=F m o-F f o$ else $F m o=0$;

In these conditions the rigidity matrix for (r, j) element

$$
\text { is: } M F C(r, j)=\left[\begin{array}{ll}
\frac{\partial E F C A(r, j)}{\partial u x} & \frac{\partial E F C A(r, j)}{\partial u z} \tag{20}\\
\frac{\partial E F C R(r, j)}{\partial u x} & \frac{\partial E F C A(r, j)}{\partial u z}
\end{array}\right]
$$

The following notations were introduced to simplify the $M F C(r, j)$ components:
$d t o=d t o(r, j)$ - contact deformation for static load case at outer contact level;
$d t i=d t i(r, j)$ - contact deformation for static load case at inner contact level;
$\alpha_{s}=\alpha_{s}(r, j)$ - contact angle in the static case;

$$
\begin{align*}
& Z O=\left(l_{o e}+d t o\right) \cdot \cos (\alpha s)+u z ; \tag{21a}\\
& X O=\left(l_{o e}+d t o\right) \cdot \sin (\alpha s)+u x ; \tag{21b}\\
& Z I=\left(l_{o i}+d t i\right) \cdot \cos (\alpha s)-u z ; \tag{22a}\\
& X I=\left(l_{o i}+d t i\right) \cdot \sin (\alpha s)-u x ; \tag{22b}
\end{align*}
$$

$$
\begin{array}{ll}
r r i=\left(Z I^{2}+X I^{2}\right)^{0.5}-l_{o i ;} & r r o=\left(Z O^{2}+X O^{2}\right)^{0.5}-l_{o e} \\
T q i=K i . r r i^{1.5} & \text { Tqo }=\text { Korrroro } \\
\text { Tdi }=1+(X I / Z I)^{2} & \text { Tdo }=1+(X O / Z O)^{2}
\end{array}
$$

From these notations results:

$$
\left.\begin{array}{l}
\frac{\partial E F C A i}{\partial u x}=T q i \cdot\left[\begin{array}{l}
\frac{-1 \cdot 5 \cdot X I^{2}}{r r i \cdot(r r i+l o i) \cdot Z I \cdot \sqrt{T d i}}- \\
-\frac{1}{Z I \cdot \sqrt{T d i}}+\frac{X I^{2}}{Z I^{3} \cdot T d i^{1.5}}
\end{array}\right] \\
\frac{\partial E F C A o}{\partial u x}=T q a\left[\begin{array}{l}
\frac{1.5 \cdot X O^{2}}{r r o \cdot(r r o+l o e) \cdot Z O \cdot \sqrt{T d o}}+ \\
+\frac{1}{Z o \sqrt{T d o}}-\frac{X O^{2}}{Z O^{3} \cdot T d o^{l .5}}
\end{array}\right] \\
\frac{\partial E F C A}{\partial u x}=\frac{\partial E F C A i}{\partial u x}-\frac{\partial E F C A o}{\partial u x}
\end{array}\right]
$$

4. The rigidity matrix of the ' r ' ' bearing

The displacements $u x$ and $u z$ are obtained solving the eq. (20) to (26). The rigidity matrix (17) has the following elements:

$$
\frac{\partial F x}{\partial\{\delta\}_{r}}=\sum_{j} \frac{\partial\left[K_{i} \cdot \delta_{i}(r, j, u x, u z)^{n} \cdot \sin \left(\alpha_{i}(r, j, u x, u z)\right)\right]}{\partial\{\delta\}_{r}}
$$

$\frac{\partial F r y}{\partial\{\delta\}_{r}}=\sum_{j} \frac{\partial\left\{K_{i} \delta_{i}(r, j, u x, u z)^{n} \cdot \cos \left(\alpha_{i}(r, j, u x, u z)\right) \cdot \sin (\psi(r, j))\right]}{\partial\{\delta\}_{r}}$
$\frac{\partial F r z}{\partial\left\{\delta_{r}\right.}=\sum_{j} \frac{\partial\left[K_{i} \cdot \delta_{i}(r, j, u x, u z)^{n} \cdot \cos \left(\alpha_{i}(r, j, u x, u z)\right) \cdot \cos (\psi(r, j))\right]}{\partial\{\delta\}_{r}}$.
$\frac{\partial M_{y}}{\{\delta\}_{r}}=\frac{\partial \sum_{j} F_{x}(r, j, u x, u z) \cdot b_{y}(r, j)+\partial \sum_{j} F_{z}(r, j, u x, u z) \cdot b_{x}(r, j)}{\partial\{\delta\}_{r}}$.
$\frac{\partial M_{z}}{\{\delta\}_{r}}=\frac{\partial \sum_{j} F_{x}(r, j, u x, u z), b_{z}(j)+\partial \sum_{j} F_{y}(r, j, u x, u z), b_{x}(r, j)}{\partial\{\delta\}_{r}}$.
where:
$\left.F_{z}(r, j, u x, u z)=\sum_{r} K_{i} \cdot \delta_{i}(r, j, u x, u z) \cdot \cos \left(\alpha_{i}(r, j, u x, u z)\right) \cos (\psi(r, j))\right)$
$\left.F_{y}(r, j, u x, u z)=\sum_{r} K_{i} \cdot \delta_{i}(r, j, u x, u z) \cdot \cos \left(\alpha_{i}(r, j, u x, u z)\right) \sin (\psi(r, j))\right)$
$F_{x}(r, j, u x, u z)=\sum_{r} K_{i} \cdot \delta_{i}(r, j, u x, u z) \cdot \sin \left(\alpha_{i}(r, j, u x, u z)\right)$

5. The (r) pair bearings life

Using the Lundberg-Palmgreen life rating method applied to the (r, j) pair bearings, the basic dynamic element capacity, Q_{c}, is defined as the ball load which will result in a life of a million revolutions of the raceway with 90 percent probability of survival.

For a ball with diameter 25 mm , basic dynamic ball capacity can be calculated as:
$Q_{c}=A . \lambda .\left(\frac{2 . f}{2 . f-1}\right)^{0.41} \frac{(1 \mp \gamma)^{1.39}}{(1 \pm \gamma)^{1.3}}\left(\frac{D w}{d m}\right)^{0.3} . D_{w}^{l .8} \cdot N_{r}^{-l / 3}(27)$ where: $A=98 ; \lambda=1$;

The calculation of the inner and outer race lives are given in Eq. (28), for the case of the inner race rotating with respect to the load. The race lives are calculated per Eq. (29), for the case when the inner race is stationary with respect to the load. The combination of the race lives to give the bearing life is shown by Eqs. (30) and (31). If the inner race rotates with respect to load, the lives can be calculated as:
$L_{r}(r)=\left(\frac{Q_{c r}}{Q_{e r}}\right)^{4} \quad L_{s}(r)=\left(\frac{Q_{c s}}{Q_{e s}}\right)^{4}$
where:

The (r) bearing life in terms of millions of revolutions can be calculated as:

$$
\begin{equation*}
L_{10}(r)=\left(L_{r}^{-e}(r)+L_{s}^{-e}(r)\right)^{-1 / e} \tag{30}
\end{equation*}
$$

Results that the pair bearings life in million of revolutions is:

$$
\begin{equation*}
L_{10}=\left(L_{10}^{-e}(1)+L_{10}^{-e}(2)\right)^{-1 / e} \tag{31}
\end{equation*}
$$

Bearing life in term of hour can be calculated as:

$$
\begin{equation*}
B_{10}=\frac{L_{10} \cdot 10^{6}}{60 \cdot R P M} \tag{32}
\end{equation*}
$$

6. Numerical examples

The following geometrical values have been considered: $B 1=B_{i l}=B_{i 2}=10[\mathrm{~mm}] ; \quad B 2=B_{o l}=B_{o 2}=10[\mathrm{~mm}]$ $L 2=L 1=10[\mathrm{~mm}] ; \quad N_{r}=12$ balls / bearing; $D w=9.525[\mathrm{~mm}] ; \quad d m=46[\mathrm{~mm}] ; \alpha_{o}=15[\mathrm{deg}]$ $R o / D w=0.52 ; \quad \quad R i / D w=0.53 ; L=50[\mathrm{~mm}]$

The effect of the " $j a$ " parameter versus $F x 1$ and $F x 2$ evolution is related in Fig. 6. The external forces are: $F z=10[\mathrm{~N}], F y=10[\mathrm{~N}], F x=200[\mathrm{~N}], L=50[\mathrm{~mm}]$
To point out the influence of the length tolerances on load distribution, the axial displacement is related in Fig. 7 as function of the " $j a$ " parameter.

Fig. 6. "ja" parameter versus axial displacement

Fig. 7. Axial displacement versus "ja" parameter for the " r " bearing

The influence of the length tolerances on the bearing life is related in Fig. 8 and 9, as function of the " $j a$ " parameter. The external conditions are: $F z=5[\mathrm{~N}]$, $F y=0[\mathrm{~N}], F x=500[\mathrm{~N}] ; R P M=25000[\mathrm{rpm}] ., L=100$ [mm].

Fig.8. Pair bearing's life versus "ja" parameter

Fig.9. Pair bearing's life versus " B " parameter

6. Conclusions

The parameters " $j a$ " and " B " influnce the components of the load vector $\{F\}_{r}$, and also the load distribution in the " r " rolling bearings' arrangement.

- From the viewpoint of the maximum rating life, an optimum distance between the curvature centres of the races of the two bearings has been found (Fig. 8 and 9).
- In order to obtain a maximum rating life for a tandem mounted bearings (Fig.1), the parameter "ja" must approach to zero.

Notations

Indexes, distances and coordinate systems

r	bearing index
j	ball number in the "r" bearing
i	inner ring
o	outer ring
n	point contact constant, $\mathrm{n}=1.5$
$\mathrm{~N}_{\mathrm{r}}$	the number of balls for the "r" bearing
m	ball weight ,[kg]
$\mathrm{K}_{\text {ech }}, \mathrm{K}_{\mathrm{i}}, \mathrm{K}_{\mathrm{e}}$	equivalent, inner, and outer, rigidity factors
dm	pitch diameter, $[\mathrm{mm}]$
Dw	ball diameter, $[\mathrm{mm}]$
O_{w}	mass center of the (r, j) ball;

$\mathrm{O}_{\mathrm{i}, \mathrm{e}}$	centers of curvature
L1,L2	lengths of intermediate parts
TL ${ }_{1,2}$	tolerances of the L1 and L2 lengths, [mm]
B1, B2	" r " bearing width, [mm]
$\mathrm{B}_{\mathrm{i}, \mathrm{r}}, \mathrm{B}_{\mathrm{o}, \mathrm{r}}$	inner and outer ring width, [mm]
R, B, C, L	lengths, [mm]
D1, D2	initial distances between curvature centers
$\mathrm{D}_{1 \mathrm{p}}, \mathrm{D}_{2 \mathrm{p}}$	final distances between curvature centers
$\mathrm{R}_{\mathrm{o}, \mathrm{i}}$	outer and inner raceway radius, [mm]
$\mathrm{TB}_{\mathrm{i}, \mathrm{or}}$	length tolerances of the inner and outer rings,
OXYZ	inertial system
$\mathrm{OX}_{1} \mathrm{Y}_{1} \mathrm{Z}_{1}$	rolling element frame for the (r, j) ball
ux,uz	displacement of the mass center
x,y,z	index to describe the axes
$1_{\text {oe }}$	distance between O_{e} and O_{w} points, [mm]
$\mathrm{l}_{\text {oi }}$	distance between O_{i} and O_{w} points, [mm]
$\mathrm{L}_{\mathrm{ie}}, \mathrm{L}_{\mathrm{ie}}(\mathrm{r})$	distance between O_{i} and O_{e} points, [mm]
Sd, Sd1(r)	diametrical clearance of the bearing [mm]
Q(r,j)	normal load, [N]
$\mathrm{Q}_{\mathrm{i}, \mathrm{o}}(\mathrm{r}, \mathrm{j})$	normal load-inner and outher racevay
Fmi, Fmo,	tangential forces
Ffi, Ffo	
ja	axial clearance, [mm]
\{\}	vector index

Forces and moments

$\{\mathrm{F}\},\{\mathrm{F}\}_{\mathrm{r}}$	force vectors
$\{\mathrm{M}\}$	moment vector
Mg	gyroscopic moment
$\mathrm{F}_{\mathrm{x}}, \mathrm{F}_{\mathrm{xr}}$	axial load along OX axes;
$\mathrm{F}_{\mathrm{y}}, \mathrm{F}_{\mathrm{yr}}$	radial loads along OY axes
$\mathrm{F}_{\mathrm{z}}, \mathrm{F}_{\mathrm{zr}}$	radial load along OZ axes
$\mathrm{M}_{\mathrm{y}}, \mathrm{M}_{\mathrm{z}}$,	external moments which act around of the OY
$\mathrm{M}_{\mathrm{yr}}, \mathrm{M}_{\mathrm{zr}}$	and OZ axis respectively

Life parametrs

L_{10}	bearing life, $\mathrm{mr}, 90 \%$ prob. survival
B_{10}	bearing life, hours, 90% prob. survival
Q_{c}	dynamic capacity
$\mathrm{Q}_{\text {er }}$	dynamic equivalent load of the rotating race
$\mathrm{Q}_{\text {es }}$	dynamic equivalent load of the stationary race
RPM	revolutions per minute

Greek notations

$\begin{aligned} & \alpha_{0,} \\ & \alpha_{0, r}, \alpha_{0 p} \end{aligned}$	initial contact angle initial contact angle affected by "ja" parameter
$\alpha_{r, 1}$	initial angle between " R " and OZ axis
$\alpha_{1}(\mathrm{r}, \mathrm{j})$	final angle between " R " ' and OZ axis
$\alpha_{s}(\mathrm{r}, \mathrm{j})$	contact angle obtained from static equilibrium
$\alpha_{i}(\mathrm{r}, \mathrm{j})$	inner contact angle obtained from the static equilibrium
$\alpha_{e}(\mathrm{r}, \mathrm{j})$	outer contact angle obtained from the static equilibrium
$\alpha_{i}(\mathrm{r}, \mathrm{j}, \mathrm{ux}, \mathrm{uz})$	outer contact angle
$\alpha_{\mathrm{e}}(\mathrm{r}, \mathrm{j}, \mathrm{ux}, \mathrm{uz})$	inner contact angle
$\delta_{i}(\mathrm{r}, \mathrm{j}, \mathrm{ux}, \mathrm{uz})$	local contact deformation at the inner ring
	level for the (r, j) index
$\delta_{i}(\mathrm{r}, \mathrm{j}, \mathrm{ux}, \mathrm{uz})$	local contact deformation at the outer ring
	level for the (r, j) index
γ	$\gamma=\mathrm{Dw} / \mathrm{dm}$, dimensionless parameter
μ	friction coefficient
λ	John's coefficient
$\omega_{\mathrm{c}, \mathrm{w}}$	angular speed of the cage and ball,

REFERENCES

1.T.Harris, „Rolling Bearing Analysis". John Wiley \& Sons, New York, London, Sydney, 1966
2.M.D.Gafitanu, D.N. Olaru, M.C. Cocea, „Die Veluste wegen der Reibung in Radial-Axial-Kugellagern bei hohen Drehzahlen", Weqr, 160 (1993), 51-60
3.M.D. Gafitanu, Cretu, Sp, Olaru D - „Rulmenti, Proiectare si tehnologie", vol 1, Ed. tehnica, Bucuresti, 1985
4.P.K. Gupta, „Dynamics of Rolling-Element Bearings, Part III: Ball Bearing Analysis", Transactions of the ASME, vol. 101, July 1979
5.Rumbarger, J.H. Poplawski, J., V, „Correlating Computerized Rolling Bearing Analysis" Techniques to the ISO Standards on Load Rating Life, Tribology Transactions, vol. 37 (1994), 793

