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Abstract: An analytical formulation to simulate the internal mechanical interactions in the double effect ball 
bearings is presented. The individual constructive particularities of the double effect ball bearings were 
considered. Many scientists consider that there are no differences between the cases when the inner ring or 
outer ring is considered rigid, but, these differences exist and are evidenced if the rigidity matrix is correctly 
constructed in 5 DOF. 
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1. INTRODUCTION 
 

The load distribution in double effect ball bearings  depends on bearing geometry and the 
boundary conditions. We consider two variants of boundary conditions. These cases correspond 
to outer ring rigid case, named "ORR" or to the inner ring rigid case named "IRR". To describe 
these differences the "Rin" and "Rou" parameters respectively were introduced.  
 
 2. ANALITICAL APPROACH 
 
Figures 1, 2, 3 and 4 show some particularities of the double effect ball bearings. For the ORR 
and IRR cases, the external load vector and the ring displacements, according to Figures 1 to 4, 
are: {F} = {Fx, Fy, Fz, My, Mz}, and δ={δx, δy, δz, γy, γz}. In that analysis the double effect ball 
bearings presented in Figs 1-4, were abbreviated as DBB1, DBB2, DBB3 and DBB4. An "r" 
index was introduced to describe the bearing rows, so "r = 1, 2".  The curvature centres are 
named Ow, Oi, Oe. To each configuration an inertial system OXYZ is attached. The system 
origin is the geometrical centre of the inner ring. Each rolling element has two degrees of 
freedom. 

 
Fig.1. Characteristics of the DBB1 bearing 
type 

Fig.2. Characteristics of the DBB2 bearing 
type 



 

Fig.3. Characteristics of the DBB3 bearing 
type 

Fig.4. Characteristics of the DBB4 bearing 
type 

 
 
The differences between the "ORR" and "IRR" concerning the curvature centre displacement are 
shown in Figs. 5 to 8.  
The effect of the ring displacement is evidenced with the < ' > index as following: for the "ORR" 
case, the Oi point becomes <Oi' > and for the "IRR" case Oe becomes <Oe'>. 
 
The load distribution in the DBB 1-4 in the "ORR" and "IRR" cases is function of the Ow, Oi, 
and Oe point displacements. To create the rigidity matrix, the following functions were 
constructed: sgn( r)= {-1,1}, for r={1,2}; ψ = ψ(r,j) to describe the rolling element position. 
 

 
 

Fig.5. DBB1 : ORR and IRR dispacements Fig.6. DBB2 : ORR and IRR dispacements 

Fig.7. DBB3 : ORR and IRR displacements Fig.8. DBB4 : ORR and IRR displacements 



 
As function of the studied case “ORR” or “IRR” and the bearing type, the "α0" angle was 
introduced (see figs. 1-4).  The misalignment effect is taken into account with: 
 
α(r,j)=α0+sgn(r).(γy.cos(ψ)+ γz.sin(ψ)                          (1) 
 
The static contact deformation for the (r,j) ball from the DBB1-4 structure corresponding to the 
"ORR case" and "IRR case", is given as: 
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where: 
 
 in the "ORR” case: 
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 in the "IRR” case: 
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 with: 
 
 "A" and "B" parameters, form Table 1 
 
 Table 1. The A, B, C and D parameters, functions of the "ORR" and "IRR" cases 

 r=1 r=2 r=1,2 r=1,2 
Bearing 

type 
α1 A B α1 A B C D 

DBB1 α1 1 1 α1 1 -1 -1 1 
DBB2 α1 1 -1 α1 1 1 -1 1 
DBB3 0 1 0 0 1 0 1 1 
DBB4 α0 1 1 α0 1 -1 -1 0 

 
and 
 
 loe=Ro-Dw/2-Sd/4, represents the distance between the Oe and Ow points  
 loi=Ri-Dw/2-Sd/4, represents the distance between the Oi and Ow points 
 Ro,i  outer and inner raceway radius 
 Sd represents the total diametric clearance of the bearing 

 
The contact angle for (r,j) rolling element is given as: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=α=α

)j,r(z
)j,r(xarctan)j,r()j,r( ei                (7) 

 
The contact load for the (r,j) ball is : 
 
Q(r,j) = Kech.δ(r,j)n                 (8) 



    
where: 
 Kech , represents the equivalent rigidity for the point contact type. 
 
The bearing equilibrium equations corresponding to the "ORR" and “IRR” cases are:  
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where: 
 
 Q(j) represents  the load acting on the (r,j) roller element; 
 bx, by, bz represents the distance from the point of contact inner raceway - ball to the centre 

of  the inertial system in "ORR" case. For "IRR" case bx, by, bz represents the distance 
from the point of contact outer raceway - ball to the centre of inertial system. 

 
For "ORR" case: 
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with: 
 
 B1 - represents the distance between the centre of curvature of the inner raceway and the 

origin of the inertial system along the OX axis. 
 C1 - represents the distance between the centre of curvature of the inner raceway and the 

origin of the inertial system along the OZ axis. 
 
For  "IRR" case result: 
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 B1 - represents the distance between the centre of curvature of the outer raceway and the 

origin of the inertial system along the OX axis. 
 C1 - represents the distance between the centre of curvature of the outer raceway and the 

origin of the inertial system along the OZ axis. 
 
δi(r,j)=δ(r,j).(Kech/Ki)1/n

         (20) 
 
 

3. THE RIGIDITY  MATRIX FOR DBB 1-4  IN THE "ORR" AND "IRR" CASES 
 
The common rigidity matrix for DBB1-4 depends of the (r,j) ball rigidity. That matrix "M", 
respects the "ORR" and "IRR" case.   
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To assure a simplified writing for the M matrix components, the X list is introduced. The X list is 
given as: 
 
X= (r,j,ux,uz)           (22) 
 
With that notation the rigidity matrix components are: 
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and:  
 
 ux, uz: are the (r,j) ball centre of mass displacement 
 δi(X): represent the local contact deformation at the inner ring level for the (j) index 
 αi(X): represent the inner contact angle of the ball inner ring contact 
 bx, by, bz refers to the "ORR" or "IRR" case respectively. 
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4. CONCLUSIONS. 
 
The proposed mathematical model shows the differences between the ORR and IRR cases. The 
boundary conditions modify bearing rigidity and load distribution. 
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