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ABSTRACT. 
 The 3 or 4 contact point ball bearings, have the special inner and / or outer rings 
geometry. Such bearings may operate smoothly from 2 to 3 or 4 contact points while 
changing operating conditions. For ball bearings with up to 2 point contacts, the 
control criteria of ball bearing under the inner or outer raceway is unusable. The 
paper presents a mathematical model to describe the ball internal kinematics under 
the effect of the external working conditions. A computer code named SRB-4PCBB 
was developed to 2, 3 and 4 point contact ball bearings analysis. The model analyses 
the internal kinematics of the ball by the principle of power minimization tackeing 
into account the he gyroscopic and spin movement effect in the ball equilibrium. 
Because in this paper is presented only the quasi-static equilibrium, the cage and 
ball angular speed are taken as constants values 
 
KEYWORDS: arched race ball bearings, internal kinematics, 2 to 4 point contact 
ball bearings, spin and gyroscopic movement, ball equilibrium. 
 

 
1. INTRODUCTION 

 
In the ball bearings with arched-outer-race the 

centrifugal forces is shared between the two ball-outer 
race contacts above some transition speed. Therefore, 
when the arched bearing has two contact points per 
ball at the outer race, the centrifugal loading can be 
shared and thereby reduce the maximum pressure at 
the outer ring contacts that subsequently will increase 
the bearing life. A first analysis of an arched bearing 
design was performed by Hamrock and Anderson [1] 
who indicated the possibility of significant fatigue life 
improvement. They developed an quasi-static analysis 
of an arched-outer race ball bearing considering only 
ball centrifugal forces, neglecting gyroscopic. The 
model was later improved [2] by adding the effect of the 
gyroscopic moment acting on the balls.  
 Recent investigations on high-speed lubricated 
ball bearings have revealed that the power loss by ball 
spinning is shared between the inner and the outer 
race [3]. The present paper proposes a mathematical 
model to describe the ball equilibrium of ball bearings 
with 2, 3 or 4 contact points. The bearing element 
kinematics has been solved considering a mixed control 
of the ball between the bearing raceways. The main 
mathematical considerations concerning the 
computing method are presented in [3].  
 
 
 

2. GEOMETRY CONSIDERATIONS 
 

The model has been developed imposing the 
outer ring(s) fixed in space. Figure 1 presents a 
simplified cross-section of a four points contact ball 
bearing (4PCBB), pointing out the position of the 
raceway curvature centers (points Pidx) relative to the 
ball mass center (point Ow). The co-ordinate system, 
external load vector {E} and deformation vector {δ} 
are presented in figure 2. The definition of each 
symbol is given in the nomenclature. 
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Fig. 1. Schematic view of a 4 points contact ball 

bearing (4PCBB). 
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Under external applied loads or imposed 
rotations and translations of the inner ring the 
raceway curvature centers reach their final positions 
noted Pidxf, as schematically presented in figure 3. For 
each ball numbered by j=1 to Z, the nominal and 
operating contact angles, respectively αidx and βidx, 
have their origin coincident with the OZ-axis. 

 

 
Fig. 2 – Co-ordinate system, external applied loads 

and corresponding rotations and translations. 
 

Fig. 3 – Initial and final positions of curvature centers. 
 

Table 1. Matrix code for all ball bearings type.   
4PCBB-1234 idx sdux sduz sdx sdz 

1 1 1 1 1 
2 -1 1 -1 1 
3 -1 -1 0 0 

 

4 1 -1 0 0 
4PCBB-13 idx sdux sduz sdx sdz 

1 1 1 1 1 
2 0 0 0 0 
3 -1 -1 0 0 

 

4 0 0 0 0 
4PCBB-123 idx sdux sduz sdx sdz 

1 1 1 1 1 
2 -1 1 -1 1 
3 -1 -1 0 0 

 

4 0 0 0 0 
4PCBB-134 idx sdux sduz sdx sdz 

1 1 1 1 1 
2 0 0 0 0 
3 -1 -1 0 0 

 

4 1 -1 0 0 
 
 The unitary mathematical analysis of different 
types of ball bearing with 2 to 4 point contacts is 

reached by using a matrix code. In this procedure all 
ball bearing types are derived from the more general 
geometry of a 4 point contact ball bearing, call type 
4PCBB-1234. The matrix code is given in table 1, 
where idx denotes the contact points [4, 6]. 

QUASI-STATIC ANALYSIS 
CONSIDERATIONS 

 
Under the effect of the external load the inner ring(s) 
of the 4PCBB structure is (are) displaced. This 
displacement produce at the ball-raceways interfaces a 
load distribution. The normal load and the elastic 
deflection of each point contact between ball "j" and 
raceway "idx" are given according with Hertz theory 
[5]. 

1.5
, ,.j idx idx j idxQ K δ=                      (0) 

where: 
Kidx  represents the contact stiffness. 
δidx represents the elastic deflection in the ball / ring 
contact, δj,idx  δj,idx(idx, uxj, uzj, δx, δz, δy, γz, γy) 
 
Ball equilibrium 
Using the significance term for sdx, sdz, sdux, sduz 
presented in Table 1 and [3,5], two equilibrium 
equations are written for each ball according to Eq.1. 
The sign effect of the gyroscopic movement is 
introduced by using the smgz, smgx coefficients 
presented in [3, 5] 
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(1) 
with: 
Qj,idx = Qj,idx(uxj,uzj) = contact load 
βj,idx = βj,idx(ux,uz) = contact angles, according to [4]. 
βw – the ball angle 
 The Newton-Raphson iterative method is 
applied to find the new components of the ball mass 
center displacements (ux, uz)j as function of the 
components of the previous vector {δ}. 
The CFBj(βw) functions are: 

∑
=

idx
idx,j

gyr
wj Q

)w(M
dw
2)(CFB

β
β             (2) 

where: 

( )
60

.wsin.b.c.Dw.)w(M j
5

billegyr
πβωωρβ =             (3) 

ωc = cage angular speed 
ωbj = ball angular speed 
Dw= ball diameter 
ρball= specific weight of the ball 
The CFBj(βw) coefficient results by following the next 
algorithm:  

1
idx

idx ==∑ λλ , and 
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gyr gyr j j ,idx
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2
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dw).w(CFB)w(M. ββλ =  

By summation  

∑∑ =
idx

idx,jj
idx

idxgyr Q..
2

dw).w(CFB.).w(M βλβ  

∑=
idx

idx,jjgyr Q..
2

dw).w(CFB)w(M ββ , → Eq. 2 

Pseudo code 
initial solution 
CFB 0; βw  0 
Solve Eq.1 : ECFA=0; ECFR=0; => Qidx, βidx 
REPEAT 

Q0idx  Qidx 

Compute Eq.2 => CFB(βw,Qidx) 
Solve Eq.1 => Qidx(CFB) 

UNTIL eps0QQ idxidx <−  
 

INTERNAL KINEMATICS 
 

Assumption of mixed control of the ball 
Figure 4 shows the necesity to develop a new 

mathematical model because the inner or outer 
raceway control can not be assumed for all ball 
bearings type. 

Fig.4. Mixed ball bearing control necesity 
 

Sliding speeds 
The speed vector at point P of the contact ellipse 

VP has three components as shown in Fig. 6 : 

xPyPsPP VVVV ++=                        (4) 
where VsP is the linear sliding velocity due to the spin 
movement (VsP = ωs×r) with ωs the spin angular 
rotational speed and r the distance from the ellipse 
center; VyP is the linear speed in the rolling direction; 
VxP is the linear speed in the transverse direction. 

The present model uses this hypothesis and the 
criteria of minimum power losses around the ball to 
deduce the direction of the ball angular rotational 
speed vector (defined by angle βw in figure 5) [4, 6]. 

The hypothesis of minimum power dissipated by 
ball “j” is written as [3, 5]: 

0
w w w

Pf Px Py
β β β
∂ ∂ ∂

= + =
∂ ∂ ∂

                        (5) 

where: 
Px represents the power loss due to sliding along the 
rolling direction; 

Py represents the power loss due to sliding along the 
transverse (axial) direction. 
 

 
Fig. 5 – Contact angles β1, β2, β3, β4 and ball axis 

attitude angle βw. 
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Fig. 6 – Linear speed components for point P. 

 
Assuming that the friction coefficient is uniform 

over the contact area eq. (5) becomes: 
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where: 
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uidx = {-β1, β2, -β3, β4} 
( )widxidx ucos.r βωω −=  the rolling component of the 

ball angular rotational speed at contact “idx”; 
( )idxwidx usin.s −= βωω  the spin component of the ball 

angular rotational speed at contact “idx”; 
Vw is the linear speed of point P on ball “j”, function 
of parameters (j, idx, ξ): 
{ } idxidxidx,idxidx, sduz.s.r.AVw ωξωξξ +=  
Vrg is the linear speed of point ξ on raceway “idx”: 
ωidx = {ωi, ωi, ωo, ωo}. 
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 The sliding velocity for point P(ξ) of contact 
”idx”, is the difference of the absolute velocities: 
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{Vsli}P,idx=[{VrgP,idx}-{VwP,idx}].Tidx.sduzidx           (7) 
where: Tidx=0 if Qidx=0; or Tidx=1 if Qidx>0; 

If the contact load respects the Hertz theory, Qidx and 

qidx,ξ are given as: 
a a

idx idx
idx idx,

a a

a b
Q . q
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= − 
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If non – Hertzian contact occur, Qidx and qidx,ξ are 
given according with [3, 6], as: 

0.11
idx, idx,q E0.k f Q( k )ξ ξ ξ ξδ ∆−= ⋅ ⋅ ⋅ ⋅  
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,
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ξ
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Finally eq. (6) gives the ball axis attitude angle βw. 

APPLICATIONS 
The mathematical model is applied to 4PCBB-

1234, 4PCBB-134, 4PCBB-123 and 4PCBB-13 
bearing types by imposing constants values for cage 
and ball speeds, and also for the main ball bearings 
parameters. The modified parameters are the axial and 
radial displacement of the inner ring(s). The input 
data are presented in table 2. Four analyses (A1, A2, 
A3, A4) are presented in what follows. 
 For all tests the angular speeds for the cage 
(ωc) and for the idx balls are given as: ωc=ωi.(1-γ)/2 
and ωb=ωi.(1-γ2).Dm/Dw/2, with ωi=ni.π/30 and 
γ=Dw/dm. The results are presented in table 3, as 
follows 
 

 
Table 2. Constants. Internal geometry  

Application example A1 A2 A3 A4 
Bearing type 4PCBB-1234 

 

4PCBB-134 

 

4PCBB-123 

 

4PCBB-13 

 
Ball diameter, Dw (mm) 20 
Bearing pitch diameter, dm (mm) 150 
Inner ring curvature factor, fi 0.525 
Outer ring curvature factor, fe 0.51 
Inner ring shim angle (deg) 20 0 20 20 (contact angle) 
Outer ring shim angle (deg) 30 30 0 20 (contact angle) 
Angular speeds, rpm ni=1000 ni=20000 
Radial displacement of the IR, mm dz=0,08 
Axial displacement of the IR, mm dx=0.05; dx=0.03 and dx=0 
 
 

Table 3. Results for A1, A2, A3 and A4 cases. 
Test  type Contact load, N Contact angle, deg Inclination angle of 

the ball angular 
rotational speed, deg

TEST A1 dx idx=1 idx=2 idx=3 idx=4 idx=1 idx=2 idx=3 idx=4 βw 
-0.05 6359 14516 7863 14046 14.85 21.9 21.99 28.62 10 
-0.03 7672 12556 8777 12470 16.3 20.53 23.4 27.4 5.97  

0 9932 9932 10437 10437 18.44 18.44 25.44 25.44 0 
TEST A2 dx idx=1 idx=2 idx=3 idx=4 idx=1 idx=2 idx=3 idx=4 βw 

-0.05 14390 0 9245 9735 5.87 0 27.56 24.6 -5.8 
-0.03 13864 0 8446 6990 3.5 0 27.03 25.29 -3.1  

0 13577 0 7568 7568 0 0 26.2 26.2 0 
TEST A3 dx idx=1 idx=2 idx=3 idx=4 idx=1 idx=2 idx=3 idx=4 βw 

-0.05 10686 6258 16128 0 20.616 16.55 7.05 0 -6.1 
-0.03 9547 6930 15644 0 19.81 17.4 4.26 0 -3.7  

0 8107 8107 15371 0 18.62 18.62 0 0 0 
TEST A4 dx idx=1 idx=2 idx=3 idx=4 idx=1 idx=2 idx=3 idx=4 βw 

-0.05 7038 0 9013 0 15.4 0 11.9 0 -13.22 
-0.03 8056 0 10017 0 16.86 0 13.49 0 -14.19  

0 9845 0 11785 0 18.95 0 15.74 0 -17.202 
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For a 4PCBB-1234 bearing,, the algorithm 
convergence was tested according to the “Pseudo 
code” for 2 different cases assuming a contact radial 
load: 
• for a High axial load 
Iter 
no. 

Initial 
sol., βw, 
deg 

Q1 Q2 Q3 Q4 Computed 
value of, 
βw, deg 

0 0 413.3 0 1422.4 990.3 -10.27 
1 -10.27 406.1 0 1275.3 1143.4 -6.71 
2 -6.71 408.1 0 1324.1 1088.7 -7.95 
3 -7.95 406.6 0 1305.9 1107.8 -7.50 
4 -7.50 407.3 0 1312.6 1100.9 -7.67 
5 -7.67 406.9 0 1310.0 1103.4 -7.60 
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• for Low axial load 
Iter 
no. 

Initial 
solution  
bw, deg 

Q1 
[N] 

Q2 
[N] 

Q3 
[N] 

Q4 
[N] 

Comp. 
value of,
bw, deg 

0 0 403.82 314.8 1405.9 1318.5 -1.71 
1 -1.71 407.89 309.5 1389.9 1333.5 -1.50 
2 -1.50 407.68 310.0 1392.1 1331.5 -1.54 
3 -1.54 407.69 309.9 1391.7 1331.9 -1.53 
4 -1.53 407.69 309.9 1391.8 1331.8 -1.53 
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CONCLUSIONS 
 

The numerical results confirm the mixed control 
criteria presented by Nelias [3]. To evaluate the 
complex kinematics in the 2, 3 or 4 point contact ball 
bearing a computer code was developed. It 
implements a unitary mathematical model with 5DOF 
able to describe the quasi-static and quasi-dynamic 
behavior of lubricated ball bearings [6].  
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