APPROXIMATE SOLUTIONS TO HERTZIAN AND NON-HERTZIAN CONTACT ELASTICITY

Daniel REZMIREȘ¹, Cezar RACOCEA², Daniel NELIAS³

¹S.C. FORPRES S.A. Iasi, ² Technical University "Gh. Asachi" of Iasi, ³ INSA - Lyon drezmir@yahoo.com

ABSTRACT

This paper presents a new numerical method to calculate the Hertzian and Non-Hertzian contact. Results calculated with the new relations are successfully compared with data from literature. The proposed method assures a good continuity of the transition between point and modified point contact.

KEYWORDS: Hertz contact, non-Hertz contact, cutting point contact analysis, Borland Delphi, Compaq Visual Fortran.

1. INTRODUCTION

To study the Quasi- Static parameters for a Non-Hertzian contact the classical methods can be uses. In this case, a computing system must allocate to that duty a large memory resources. That implies also a big consuming time. To reduce these disadvantages some interpolation functions was create. A computing code was developed in Borland Delphi and Visual Fortran for a French company and some results are shown.

2. NUMERICAL FORMULATION.

When a bearing is loaded some conjunctions can be of line contact type and others of point contact type [1]. The contact load is a function of the center of mass displacement of the rolling element (ξ). The local contact deformation for a slice "j" is given as the geometrical interference between the roller element and raceway geometry as:

$$\delta_j = \left(\frac{1}{Rw} - \frac{1}{Rc}\right) \cdot \frac{XR_j^2}{2} + \xi \tag{1}$$

where:

 $XR_{j} = \frac{2.j - N}{N} \cdot \frac{lw}{2}$ j = is the slice index,

Rw =local rolling element radius profile,

Rc = local raceway radius.

The proposed functions to obtain the contact parameters are given by equation (2), as follows [4]: Local contact pressure, P=P(j)

$$P_j \approx \frac{0.282.E.k^{-0.11}.\delta_j.2}{\pi.b_j}.fp(k)$$
 (2a)

Local semi-width, b=b(j) $b_j = R_{y_j} \cdot \sqrt{\frac{\delta_j \cdot k^{-0.11}}{Ry}} \cdot 1.15617.fb(k)$ (2b)

Local load, Q=Q(j)

$$Q_j = E0.k^{-0.11}.\delta_j.\Delta x_j.fQ(k)$$
(2c)

with:

$$fp(k) = \frac{3.2821 - 0.3322 \cdot \ln(k)}{1 + 0.42877 \cdot \ln(k)}$$
$$fb(k) = \frac{1.21386 - 0.07678 \cdot \ln(k)}{1 + 0.115078 \cdot \ln(k)}$$
$$fQ(k) = \frac{0.94896 - 0.09445 \cdot \ln(k)}{1 + 0.45412 \cdot \ln(k)}$$

and

•
$$\Delta x_j = \frac{lw}{N}$$
, length of the slice section "j"

• lw = the rolling element length,

• *k*, the contact elipticity [1, 3],

E_o, the equivalent modulus of elasticity of the two bodies in contact [1, 3]

3. NUMERICAL APPLICATIONS

The model was applied to study the Hertz and non-Hertz contact type .

3.1. Hertz contact type

Assuming a spherical roller bearing (SRB) 22308C with

• Contact angle 14.33°;

- Pitch diameter *dm*=66 [mm];
- Roller diameter dw=13 [mm];
- Roller length lw=12 [mm];
- Roller radius *Rw=39.5* [mm]

• Inner raceway profile radius Rc=40.35 [mm] Table 1 shows some numerical comparisons between the numerical solutions gives by Hertz theory and the proposed formulas (see also figure 1).

Table 1. Numerical comparisons	, SRB 22308C – roller – inner ring contact.

Contact	Contact	Hertz theory		Eq. 2		
load	ellipticity					
Q[N]	k(Rw)	Maximum	b[mm],	max(P), [MPa]	max(b), [mm]	
		pressure [MPa]	semi width of the			
			point contact			
300	k=44,27565	730.9	0.06653	731.59	0.06652	
2500	Rw=39.5	1481.8	0.13488	1483.2	0.13487	
300	k=16.0082	1029.3	0.0932	1029.1	0.0932	
2500	Rw=36.5	2086.9	0.1980	2086.5	0.1980	

Fig. 1a. The pressure distribution according to the table 1, and geometry input data.

Fig. 1b. Pressure distribution – details. Numeric results for Rw=39.5.

3.2. Non Hertz contact type. Example for the multi radius profile

For the case of the multi-radius profile was chosen the case given in the [2] & [3] references. In figure 2, the bearing geometry and the pressure distribution are presented for two distinct cases as a function of the external load. The numerical validation of the proposed mathematical model is assured by the results presented in table 2 and figures 3a, 3b, 3c respectively.

Fig. 2. Ref [2] & [3]. Rroller diameter, Dw=15 mm, roller length, lw= 16 mm, the race diameter, d=58.5.

Table 2. Numerical results. Comparisons with reference						
Load, N	Krzeminski [2]	Half space model	FEM	Full model	Eq. (2)	
10000	002785	0.028	0.02444	0.02482	0.02256	
33800	0.06714	0.0675	0.0570	0.05737	0.06653	

Fig. 3a. The pressure distribution imposing the contact load as 33800 N.

THE ANNALS OF UNIVERSITY "DUNĂREA DE JOS " OF GALAȚI FASCICLE VIII, 2004, ISSN 1221-4590 TRIBOLOGY

Fig. 3b. Pressure distribution – details. Numerical results.

The pressure distribution presented in figure 2a, and the center mass displacement presented in table 2, give a good correlation between author's relations and references [2] and [3], respectively.

4. CONCLUSIONS

The proposed equations have been compared successfully to the different method [2] and [3], giving confidence in the new suggested method. The proposed method improves the computing speed of the non-Hertzian cutting point contact parameters and shows that the imposed hypothesis of the linear dependence between load and centre of mass displacement of the rolling element gives good results.

REFERENCES

1. Harris T.A., 1991, <u>Rolling bearing analysis</u>, 3rd edition, John Wiley & Sons Inc., New York.

2. Krweminski-Freda, Warda B., 1996, Correction of the roller generators in spherical roller bearings, *Technical University of Lodz, Poland, Wear*, 192, p. 29-39.

3. Cretu Sp., 2002, Mecanica Contactului, *Universitatea Tehnica* "Gh Asachi" Iasi, Romania.

4. Rezmires D., 2003, Research on Dynamics and Kinematics Optimization of the Spherical Roller Bearings, Iasi, PhD Thesis.